Part Number Hot Search : 
LTC61 SMC13 OSB5SA DS1384FP 78D05 PLO1210 D5152 2AXXX
Product Description
Full Text Search
 

To Download BA17816FP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 78 Series Regulators
1A Output 78 series Regulators 500mA Output 78 series Regulators
BA78Series,BA78MSeries
No.09019EBT01
Description BA78, BA78M series are three-terminal regulators available with several fixed output voltages. It supplies the stable fixes voltage from unstable direct input voltage. The useful output voltage lineup is 5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V with 0.5A / 1A current ability. They have nearly same electric characteristics as competitor products and cover a wide range of application.
Features 1) Built-in over-current protection circuit and thermal shutdown circuit 2) High ripple rejection 3) Available TO220CP-3, TO252-3 package to a wide range application 4) Compatible replacement to competitor products 5) Various voltage lineup (5V, 6V, 7V, 8V, 9V, 10V, 12V, 15V, 18V, 20V, 24V)
Applications Fixed voltage power supply for TV, Audio components, etc
Line up 1A BA78Series Part Number 5V BA78CP BA78FP
6V
7V
8V
9V
10V
12V
15V
18V
20V
24V
Package TO220CP-3 TO252-3
0.5A BA78MSeries Part Number 5V 6V BA78MCP BA78MFP Output Voltage and Marking Part NumberBA78 a b Symbol 05 06 07 08 09 10
7V
8V
9V
10V
12V
15V
18V
20V
24V
Package TO220CP-3 TO252-3
(1A)
Part NumberBA78M a b Symbol
(0.5A)
assignment of output voltage Output voltage(V) Output voltage(V) 5.0V typ. 12 12V typ. 6.0V typ. 15 15V typ. 7.0V typ. 18 18V typ. 8.0V typ. 20 20V typ. 9.0V typ. 24 24V typ. 10.0V typ. Package CPTO220CP-3 FPTO252-3
assignment of output voltage Output voltage(V) 05 5.0V typ. 12 06 6.0V typ. 15 07 7.0V typ. 18 08 8.0V typ. 20 09 9.0V typ. 24 10 10.0V typ. Package CPTO220CP-3 FPTO252-3 Output voltage(V) 12V typ. 15V typ. 18V typ. 20V typ. 24V typ.
a
a
b
b
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
1/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Absolute Maximum Rating (Ta=25) BA78CP/FP, BA78MCP/FP Parameter Power supply voltage TO220CP-3 Power Dissipation 1 TO252-3 TO220CP-3 Power Dissipation 2 TO252-3 BA78 Output Current BA78M Operating Temperature Range Storage Temperature Range Operating Junction Temperature Range
Technical Note
Symbol Vin Pd1 Pd2 Io Topr Tstg Tj
Limits 35 2 *1 1 *1 *2 22 10 *2 1 *3 0.5 *3 -40+85 -55+150 -40+150
Unit V W W A
*1 Derating in done 16mW/(TO220CP-3), 8mW/(TO252-3) for temperatures above Ta=25 *2 Derating in done 176mW/(TO220CP-3), 80mW/(TO252-3) for temperatures above Ta=25, Mounted on infinity Alminium heat sink. *3 Pd,ASO and Tjmax(150) should not be exceeded.
Operating Conditions(Ta=25, Pd should not be exceeded) BA78CP/FP Parameter Symbol Min. Max. Unit. BA7805 7.5 25 BA7806 8.5 21 BA7807 9.5 22 BA7808 10.5 23 BA7809 11.5 26 Input BA7810 12.5 25 Vin V Voltage BA7812 14.5 27 BA7815 17.5 30 BA7818 21 33 BA7820 23 33 BA7824 27 33 Output Current Io 1 A
BA78MCP/FP Parameter BA78M05 BA78M06 BA78M07 BA78M08 BA78M09 Input BA78M10 Voltage BA78M12 BA78M15 BA78M18 BA78M20 BA78M24 Output Current
Symbol
Vin
Io
Min. 7.5 8.5 9.5 10.5 11.5 12.5 14.5 17.5 21 23 27 -
Max. 25 21 22 23 26 25 27 30 33 33 33 0.5
Unit.
V
A
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
2/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Electrical Characteristics
Parameter
Technical Note
BA78MCP/FP
Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06/07/08/09/10/12 15/18 20/24 common common Limit Typ 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 18.0 20.0 24.0 3 3 4 4 4 5 5 6 7 8 10 1 1 1 1 2 2 3 3 3 4 5 78 74 71 69 67 66 63 60 58 58 55 -1.0 -0.5 -0.6 -0.7 875 2.0 Unit Condition
(Ta=25,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24), Io350mA unless otherwise specified)
Symbol
Output Voltage 1
Vo1
Output Voltage 2
Vo2
Line Regulation 1
Reg.I1
Line Regulation 2
Reg.I2
Ripple Rejection
R.R.
Temperature Coefficient of Output Voltage Peak Output Current Dropout Voltage
Tcvo Io-p Vd
Min 4.8 5.75 6.7 7.7 8.6 9.6 11.5 14.4 17.3 19.2 23.0 4.75 5.7 6.65 7.6 8.55 9.5 11.4 14.25 17.1 19.0 22.8 62 60 57 56 56 56 55 54 53 53 50 -
Max 5.2 6.25 7.3 8.3 9.4 10.4 12.5 15.6 18.7 20.8 25.0 5.25 6.3 7.35 8.4 9.45 10.5 12.6 15.75 18.9 21.0 25.2 100 100 100 100 100 100 100 100 100 100 100 50 50 50 50 50 50 50 50 50 50 50 -
V
Io=350mA
V
mV
mV
Vin=7.520V, Io=5mA350mA Vin=8.521V, Io=5mA350mA Vin=9.522V, Io=5mA350mA Vin=10.523V, Io=5mA350mA Vin=11.524V, Io=5mA350mA Vin=12.525V, Io=5mA350mA Vin=1527V, Io=5mA350mA Vin=17.530V, Io=5mA350mA Vin=2133V, Io=5mA350mA Vin=2333V, Io=5mA350mA Vin=2733V, Io=5mA350mA Vin=725V, Io=200mA Vin=825V, Io=200mA Vin=925V, Io=200mA Vin=10.525V, Io=200mA Vin=11.526V, Io=200mA Vin=12.528V, Io=200mA Vin=14.530V, Io=200mA Vin=17.530V, Io=200mA Vin=2133V, Io=200mA Vin=2333V, Io=200mA Vin=2733V, Io=200mA Vin=812V, Io=200mA Vin=925V, Io=200mA Vin=1025V, Io=200mA Vin=1125V, Io=200mA Vin=1225V, Io=200mA Vin=1426V, Io=200mA Vin=1630V, Io=200mA Vin=2030V, Io=200mA Vin=2433V, Io=200mA Vin=2433V, Io=200mA Vin=2833V, Io=200mA
dB
ein=1Vrms, f=120Hz, Io=100mA
mV/ mA V
Io=5mA, Tj=0125 Tj=25 Io=500mA
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
3/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Electrical Characteristics
Parameter
Technical Note
BA78MCP/FP
Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 common common 05 06 07 08 09 10 12 15 18 20 24 05/06/07/08 09/10/12/15/18/20/24 05 06 07 08 09 10 12 15 18 20 24 Limit Typ 20 20 20 20 20 20 20 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 40 60 70 80 90 100 110 130 140 150 170 4.5 0.4 0.17 9 10 11 12 13 14 16 19 22 25 37 Unit Condition
(Ta=25,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io350mA unless otherwise specified)
Symbol
Load Regulation 1
Reg.L1
Load Regulation 2
Reg.L2
Output Noise Voltage
Vn
Bias Current Bias Current Change1
Ib Ib1
Bias Current Change 2
Ib2
Short-Circuit Output Current
Ios
Output Resistance
Ro
Min -
Max 100 120 140 160 180 200 240 300 360 400 480 50 60 70 80 90 100 120 150 180 200 240 6.0 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 -
mV
Io=5mA500mA
mV
Io=5mA200mA
V
f=10Hz100kHz
mA mA
mA
A
Io=0mA Io=5mA350mA Vin:825V, Io=200mA Vin:925V, Io=200mA Vin:1025V, Io=200mA Vin:10.525V, Io=200mA Vin:1225V, Io=200mA Vin:1325V, Io=200mA Vin:14.530V, Io=200mA Vin:17.530V, Io=200mA Vin:2133V, Io=200mA Vin:2333V, Io=200mA Vin:2733V, Io=200mA Vin=25V Vin=30V
m
f=1kHz
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
4/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Electrical Characteristics
Parameter
Technical Note
BA78CP/FP
Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06/07/08/09/10/12 15/18 20/24 common common Limit Typ 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 18.0 20.0 24.0 3 4 5 5 6 7 8 9 10 12 15 1 2 2 3 4 4 5 5 5 7 10 78 73 69 65 64 64 63 62 61 60 58 -1.0 -0.5 -0.6 -0.7 1.7 2.0 Unit Condition
(Ta=25,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io=500mA unless otherwise specified)
Symbol
Output Voltage 1
Vo1
Output Voltage 2
Vo2
Line Regulation 1
Reg.I1
Line Regulation 2
Reg.I2
Ripple Rejection
R.R.
Temperature Coefficient of Output Voltage Peak Output Current Dropout Voltage
Tcvo Io-p Vd
Min 4.8 5.75 6.7 7.7 8.6 9.6 11.5 14.4 17.3 19.2 23.0 4.75 5.7 6.65 7.6 8.55 9.5 11.4 14.25 17.1 19.0 22.8 62 59 57 56 56 55 55 54 53 53 50 -
Max 5.2 6.25 7.3 8.3 9.4 10.4 12.5 15.6 18.7 20.8 25.0 5.25 6.3 7.35 8.4 9.45 10.5 12.6 15.75 18.9 21.0 25.2 100 120 140 160 180 200 240 300 360 400 480 50 60 70 80 90 100 120 150 180 200 240 -
V
Io=500mA
V
mV
mV
Vin=7.520V, Io=5mA1A Vin=8.521V, Io=5mA1A Vin=9.522V, Io=5mA1A Vin=10.523V, Io=5mA1A Vin=11.526V, Io=5mA1A Vin=12.525V, Io=5mA1A Vin=1527V, Io=5mA1A Vin=17.530V, Io=5mA1A Vin=2133V, Io=5mA1A Vin=2333V, Io=5mA1A Vin=2733V, Io=5mA1A Vin=725V, Io=500mA Vin=825V, Io=500mA Vin=925V, Io=500mA Vin=10.525V, Io=500mA Vin=11.526V, Io=500mA Vin=12.527V, Io=500mA Vin=14.530V, Io=500mA Vin=17.530V, Io=500mA Vin=2133V, Io=500mA Vin=2333V, Io=500mA Vin=2733V, Io=500mA Vin=812V, Io=500mA Vin=913V, Io=500mA Vin=1015V, Io=500mA Vin=1117V, Io=500mA Vin=1319V, Io=500mA Vin=1420V, Io=500mA Vin=1622V, Io=500mA Vin=2026V, Io=500mA Vin=2430V, Io=500mA Vin=2632V, Io=500mA Vin=3033V, Io=500mA
dB
ein=1Vrms, f=120Hz, Io=100mA
mV/ A V
Io=5mA, Tj=0125 Tj=25 Io=1A
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
5/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Electrical Characteristics
Parameter
Technical Note
BA78CP/FP
Type 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 05 06 07 08 09 10 12 15 18 20 24 common common 05 06 07 08 09 10 12 15 18 20 24 05/06/07/08 09/10/12/15/18/20/24 05 06 07 08 09 10 12 15 18 20 24 Limit Typ 15 16 17 19 20 21 23 27 30 32 37 5 6 6 7 8 8 10 10 12 14 15 40 60 70 80 90 100 110 125 140 150 180 4.5 0.6 0.3 9 10 10 10 10 11 12 14 17 19 27 Unit Condition
(Ta=25,Vin=10V(05),11V(06),13V(07),14V(08),15V(09),16V(10),19V(12),23V(15),27V(18),29V(20),33V(24),Io=500mA unless otherwise specified)
Symbol
Load Regulation 1
Reg.L1
Load Regulation 2
Reg.L2
Output Noise Voltage
Vn
Bias Current Bias Current Change 1
Ib Ib1
Bias Current Change 2
Ib2
Short-Circuit Output Current
Ios
Min -
Output Resistance
Ro
-
Max 100 120 140 160 180 200 200 300 360 400 480 50 60 70 80 90 90 100 150 180 200 240 8.0 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 -
mV
Io=5mA1A
mV
Io=250mA750mA
V
f=10Hz100kHz
mA mA
mA
A
Io=0mA Io=5mA1A Vin:825V, Io=500mA Vin:8.525V, Io=500mA Vin:9.525V, Io=500mA Vin:10.525V, Io=500mA Vin:11.526V, Io=500mA Vin:12.527V, Io=500mA Vin:14.530V, Io=500mA Vin:17.530V, Io=500mA Vin:2133V, Io=500mA Vin:2333V, Io=500mA Vin:2733V, Io=500mA Vin=25V Vin=30V
m
f=1kHz
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
6/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Technical Note
BA78M Characteristics data(Ta=25, Vin=10V(05), 14V(08), 23V(15) unless otherwise specified)
20
20
20
Ta=25
15
Io=0mA
15
Ta=25
Io=350mA
15
Ta=25 Ta=25
Io=500mA Io=500mA
BA78M15
Vo [V]
BA78M15
Vo [V]
BA78M15
Vo [V]
10
10
10
BA78M08
5
5
BA78M08 BA78M05
0
BA78M08
5
BA78M05
0 0 5 10 15 20 25 30
BA78M05
0
0
5
10
15 Vin [V]
20
25
30
0
5
10
15 Vin [V]
20
25
30
Vin [V]
Fig.1 Line Regulation (Io=0mA)
6 5 4 Ib [mA] 3
Fig.2 Line Regulation (Io=350mA)
20
2.0
Fig.3 Line Regulation(Io=500mA)
Ta=25 BA78M05
Io=0mA
15
Ta=25 BA78M15
Ta=25
1.5
BA78M08
10
BA78M05
Io-p [A]
Vo [V]
1.0
BA78M08
BA78M15
BA78M15
2
BA78M08 BA78M05
5
1 0 0 5 10 15 20 25 30
0.5
0 0.0 0.5 1.0 1.5 2.0
0.0 0 5 10 15 20 25 30
Vin [V]
Io [A]
Vin [V]
Fig.4 VIN - Ib Vin Io
2.0 1.0
Fig.5 Load Regulation
100
Fig.6 Peak Output Current
Ta=25
0.8 1.5
Ta=25 BA78M05 BA78M08 BA78M15
R.R. [dB] 80
BA78M05
Vd [V]
Ios [A]
1.0
BA78M05 BA78M08 BA78M15
0.6
60
BA78M08
40
BA78M15
0.4 0.5
0.2
20
0
0 5 10 15 Vin [V] 20 25 30
Ta=25 Io=100mA
100 100 1K 10K 100K 1000 10000 100000 Frequency Hz 1M 1000000
0.0 0 0.1 0.2 Io [A] 0.3 0.4 0.5
0.0
0
10 10
Fig.7 Dropout Voltage
1.5
Fig.8 Short - Circuit Output Current
6
Fig.9 Ripple Rejection Ratio
6
Frequency [Hz]
Io=5mA
1.0 0.5 Vo/Vo [%] 0.0 -0.5 -1.0 -1.5 -40 -20 0 20 40 Ta [] 60 80 100
Io=0mA
5
Ta=25
BA78M15 BA78M15 BA78M08 BA78M08
Ib [mA]
BA78M15
5 4
BA78M05
Ib[mA]
4 3 2 1 0 -40 -20 0 20 40
BA78M08
3 2 1 0
BA78M15 BA78M08
BA78M05 BA78M05
BA78M05
60
80
100
0
0.1
0.2 Io [A]
0.3
0.4
0.5
Ta[]
Fig.10 Ta - Vo
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
Fig.11 Ta - Ib
Fig.12 Io - Ib
7/12
2009.11 - Rev.B
BA78Series,BA78MSeries
BA78 Characteristics data (Ta=25, Vin=10V(05), 14V(08), 23V(15) unless otherwise specified)
20
Technical Note
20
20
Ta=25
15
Io=0mA
15
Ta=25
Io=500mA
15
Ta=25
Io=1A
BA7815
Vo [V]
BA7815
Vo [V]
BA7815
10
Vo [V]
10
10
BA7808
5
BA7808
5
BA7808
5
BA7805
0 0 5 10 15 20 25 30
BA7805
BA7805
0 0 5 10 15 20 25 30
0 0 5 10 15 20 25 30
Vin [V]
Vin [V]
Vin [V]
Fig.13 Line Regulation (Io=0mA)
6
Fig.14 Line Regulation (Io=500mA)
20
2.0
Fig15. Line Regulation (Io=1A)
Ta=25
5 4
Ib [mA]
Io=0mA
15
Ta=25 BA7815
Ta=25
BA7805
1.5
BA7805
Vo [V]
3 2
BA7808 BA7815
Io-p [A]
10
BA7808 BA7805
1.0
BA7808
5
1 0 0 5 10 15 Vin [V] 20 25 30
BA7815
0.5
0 0.0 0.5 1.0 Io [A] 1.5 2.0
0.0 0 5 10 15 20 25 30
Vin [V]
Fig.16 Vin - Ib
2.0
2
Fig.17 Load Regulation
100
Fig.18 Peak Output Current
Ta=25
1.5
1.5
Ta=25 BA7805 BA7808 BA7815
R.R. [dB] 80
BA7805
Ios [A]
Vd [V]
1.0
BA7805 BA7808 BA7815
60
1
BA7808
40
BA7815
0.5
0.5
20 Ta=25
Io=100mA
0.0 0 0.2 0.4 Io [A] 0.6 0.8 1
0 0 5 10 15 20 25 30
0 0 10 10 100 100
Vin [V]
1K 1000 10K 10000 Frequency [Hz]
100K 1M 100000 1000000
Fig.19 Dropout Voltage
1.5
Fig.20 Short - Circuit Output Current
6
6
Fig.21 Ripple Rejection Ratio
Io=5mA
1.0 0.5
Vo/Vo [%]
5 4
Ib [mA]
Io=0mA Io=0mA
BA7815
5
Ta=25
BA7815
BA7815
4
Ib [mA]
BA7815
0.0 -0.5
BA7808 BA7808
3 2
BA7808
3
BA7805 BA7805
BA7805
2 1 0
BA7805
-1.0 -1.5 -40 -20
BA7808
1 0
0 20 40 60 80 100
-40
-20
0
20
40
60
80
100
0
0.2
0.4 Io [A]
0.6
0.8
1
Ta []
Ta []
Fig.22 Ta - Vo
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
Fig.23 Ta - Ib
Fig.24 Io - Ib
8/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Internal Circuit Structural Diagram
R8 Q8 Q12 Q15 Q10 Q13 Q5 R6 D1 R1 Q18 Q1 Q14 R7 R22 R18 R3 Q6 R15 R2 Q7 Q2 C1 Q4 Q3 R14 D3 COMMON R16 Q11 R19 R20 R21 R17 R9 INPUT R13 Q9 D2 Q16 Q17 R12 R11 OUTPUT
Technical Note
R4
R10
R5
FIN
123
TO220CP-3
PIN No. 1 2 3 Symbol INPUT COMMON OUTPUT Function Input terminal Ground terminal Output terminal PIN No. 1 2 3 FIN
TO252-3
Symbol INPUT N.C. OUTPUT COMMON Function Input terminal Non connection terminal Output terminal Ground terminal
Protection Circuit
6
Output voltage : Vo [V]
(1)Over-current protection circuit When the maximum rating current or more is rushed, it controls the current ability and protects the IC from destruction.
Vin=10V BA7805CP
5 4 3 2 1 0 1 2 Output Current : IO[A]
Output Voltage : Vo [V]
(2) Thermal shutdown circuit When the chip temperature of IC exceeds the setting temperature, the IC goes OFF, and it controls the IC not to be destroyed by the heat generation. It can be restored by being lowered the chip temperature of IC below the setting temperature.
6 5 4 3 2 1 0 25 50 75 100 125 150 175 200 Chip Junction temperature : Tj [] Vin=10V BA7805CP
Maximum output current : IO-P[A]
(3) Safety operation area control circuit It controls the output current in inverse proportion ratio to voltage difference (input-output). When voltage difference becomes bigger, the IC will be destroyed in rush current. It protects the IC by controlling the current ability according to the voltage level.
2 1.5 Tj=25 BA7805CP
1
0.5
0
10
20
30
40
Input-Output voltage difference: Vin-Vo [V]
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
9/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Technical Note
Thermal design Refer to the following thermal derating curves (Fig. 25, 26), when using in the status of Ta=25 or more. The characteristic of IC is greatly related to the operating temperature. When it is used in over maximum junction temperature, the elements inside IC might become weaker and be destroyed. It is recommended to take into consideration thermal of IC. Note that the temperatures are in the allowed temperature limits and operated within Pd. It is necessary to operate it at junction temperature Tjmax or less to prevent IC from the thermal destruction. Please operate IC within permissible loss Pd because the junction temperature Tj might become considerably a high temperature even if ambient temperature Ta is normal temperature (25). Power consumption Pc(W) may be expressed by the equation shown below: Pc=(Vin-Vo)xIo+ VinxI permissible loss PdPc
Io
Pd Vin Ib Vin Vo
Vin Vo Io Ib
: Input Voltage : Output Voltage : Output Current : Bias current
Maximum Output current IoMAX can be calculated in thermal design. Calculation example Ex.1) Ta=85, Vin =7.5V, Vo=5.0V
1.04 7.5 4.5m Io 7.5 5.0 Io400A
Using TO220CP-3 alone ja=62.5/W16mW/ Pd=1.04W at 85
Be sure to use this IC within a power dissipation at the range of operating temperature.
25
POWER DISSIPATION: Pd[W]
(1) 22.0
12.5
(1) Mounted on infinity Alminium heat sinkj-c=5.7(/W) (2) Using an IC alonej-a=62.5/W
20
POWER DISSIPATION: Pd[W]
(1) 10.0 10
(1) Mounted on infinity Alminium heat sinkj-c=12.5 (/W) (2) Using an IC alonej-a=125.0/W
15 10
7.5 5
5 (2) 2.0 0 0 25 50 75 100 125 150
2.5 (2) 1.0 0 0 25 50 75 100 125 150
AMBIENT TEMPERATURE : Ta[]
AMBIENT TEMPERATURE : Ta[]
Fig.25 Thermal derating curve (TO220CP-3)
Fig.26
Thermal derating curve (TO252-3)
Terminal Setting and Cautions INPUT It is recommended that a capacitor (about 0.33uF) be inserted between INPUT and COMMON. The value of capacitor is designed suitable for the actual application. OUTPUT It is recommended that a capacitor (about 0.1uF) be inserted between OUTPUT and COMMON. A tantalum capacitor can also be used for this pin because insufficient capacitors may cause oscillation by a temperature change. COMMON Keep the no voltage drop between Ground level of set board and IC. When there is the voltage difference, setting voltage becomes inaccuracy and unstable. It is recommended to connect by wide, short pattern, and lower the inpedance.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
10/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Technical Note
Notes for use (1) Absolute Maximum Ratings While utmost care is taken to quality control of this product, any application that may exceed some of the absolute maximum ratings including the voltage applied and the operating temperature range may result in breakage. If broken, short-mode or open-mode may not be identified. So if it is expected to encounter with special mode that may exceed the absolute maximum ratings, it is requested to take necessary safety measures physically including insertion of fuses. (2) Ground voltage Make setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no terminals are at a potential lower than the GND voltage including an actual electric transient. (3) Thermal design When you do the kind of use which exceeds Pd, It may be happened to deteriorating IC original quality such as decrease of electric current ability with chip temperature rise. Do not exceed the power dissipation (Pd) of the package specification rating under actual operation, and please design enough temperature margins. (4) Short-circuiting between terminals, and mismounting When mounting to pc board, care must be taken to avoid mistake in its orientation and alignment. Failure to do so may result in IC breakdown. Short-circuiting due to foreign matters entered between output terminals, or between output and power supply or GND may also cause breakdown. (5) Operation in Strong electromagnetic field Be noted that using the IC in the strong electromagnetic radiation can cause operation failures. (6) Inspection with the IC set to a pc board If a capacitor must be connected to the pin of lower impedance during inspection with the IC set to a pc board, the capacitor must be discharged after each process to avoid stress to the IC. For electrostatic protection, provide proper grounding to assembling processes with special care taken in handling and storage. When connecting to jigs in the inspection process, be sure to turn OFF the power supply before it is connected and removed. (7) Input to IC terminals + This is a monolithic IC with P isolation between P-substrate and each element as illustrated below. This P-layer and the N-layer of each element form a P-N junction, and various parasitic element are formed. If a resistor is joined to a transistor terminal as shown in Fig 28. P-N junction works as a parasitic diode if the following relationship is satisfied; GND>Terminal A (at resistor side), or GND>Terminal B (at transistor side); and if GND>Terminal B (at NPN transistor side), a parasitic NPN transistor is activated by N-layer of other element adjacent to the above-mentioned parasitic diode. The structure of the IC inevitably forms parasitic elements, the activation of which may cause interference among circuits, and/or malfunctions contributing to breakdown. It is therefore requested to take care not to use the device in such manner that the voltage lower than GND (at P-substrate) may be applied to the input terminal, which may result in activation of parasitic elements. (8) Ground wiring pattern If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well. (9) Thermal shutdown circuit A temperature control circuit is built in the IC to prevent the damage due to overheat.Therefore, the output is turned off when the thermal circuit works and is turned on when the temperature goes down to the specified level. But, built-in the IC a temperature control circuit to protect itself, and avoid the design used the thermal protection. (10) Over current protection circuit The over-current protection circuits are built in at output, according to their respective current outputs and prevent the IC from being damaged when the load is short-circuited or over-current. But, these protection circuits are effective for preventing destruction by unexpected accident. When it's in continuous protection circuit moving period don't use please. And for ability, because this chip has minus characteristic, be careful for heat plan. (11) There is a possibility to damage an internal circuit or the element when Vin and the voltage of each terminal reverse in the application. For instance, Vin is short-circuited to GND etc. with the charge charged to an external capacitor. Please use the capacitor of the output terminal with 1000F or less. Moreover, the Vin series is recommended to insert the diode of the by-pass the diode of the backflow prevention or between each terminal and Vin.
Pin B
Bypass diode Backflow prevention diode VCC Output terminal
N P+ N P P+ N N P+ N P P+ N GND
Resistor Pin A Pin B
Transistor (NPN)
C B E B C E
Parasitic element
P substrate Parasitic element
GND
P substrate Parasitic element
GND GND
Other adjacent elements Pin A Parasitic element
Fig.27 Bypass Diode
Fig.28
Simplified structure of monorisic IC
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
11/12
2009.11 - Rev.B
BA78Series,BA78MSeries
Ordering part number
Technical Note
B
A
1
7
8
M
Output Current None1A M 0.5A
0
5
F
P
-
E
2
Part No
Part No
Output Voltage 05 : 5V 24 : 24V
Package CP :TO220CP-3 FP :TO252-3
Packaging and forming specification E2: Embossed tape and reel (TO220CP-3, TO252-3)
TO220CP-3
3.20.1 +0.3 10.0-0.1

4.50.1 +0.2 2.8-0.1
Tape Quantity
Embossed carrier tape 500pcs E2
+0.4 15.2-0.2
12.00.2
1.00.2
8.00.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
The direction is the 1pin of product is at the lower left when you hold
)
5.610.2
1
2
3
(0.585) 0.820.1 1.3 2.54
0.420.1 2.85
2.46
12
3
(Unit : mm)
Reel
1pin
Direction of feed
Order quantity needs to be multiple of the minimum quantity.
TO252-3

6.50.2
1.50.2
Tape
C0.5 2.30.2 0.50.1
Embossed carrier tape 2000pcs E2
The direction is the 1pin of product is at the lower left when you hold
+0.2 5.1 -0.1
Quantity Direction of feed
FIN
5.50.2 9.50.5
( reel on the left hand and you pull out the tape on the right hand
)
0.65 0.75 2.30.2
0.8
0.65 0.50.1
2.30.2
1.00.2
2.5
1
2
3
1.5
1pin
Direction of feed
(Unit : mm)
Reel
Order quantity needs to be multiple of the minimum quantity.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
12/12
2009.11 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
R0039A


▲Up To Search▲   

 
Price & Availability of BA17816FP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X